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The nonlinear evolution and breakdown of laminar flow in the boundary layer on a 
flat plate is examined with the aim of making a closer comparison of theory and experi- 
ment than has been attempted previously. The importance of three-dimensionality is 
emphasized. It is concluded that many features of the nonlinear instability are con- 
sistent with existing linear and weakly nonlinear theories even as breakdown is 
approached. The development of the secondary instability, or ‘spike’, is also con- 
sidered and suggestions for an improved theory of its growth are made. 

1. Introduction 
Beginning his review of boundary-layer transition, Tani (1969) remarks that ‘The 

problem of the transition from laminar to turbulent flow in the boundary layer is un- 
paralleled in having attracted the interest of investigators for so many years. Despite 
the enormous amount of research effort devoted to it, our understanding of the problem 
is still far from complete.’ Ten years on, this situation has not greatly changed, 
although the research effort continues and some important advances have been made. 

The aim of this paper is to provide a closer comparison of theory and experiment 
than has been attempted previously. I n  so doing, a clearer view emerges of the areas 
of agreement and of uncertainty, and a better appreciation is reached of the extent 
to  which weakly nonlinear theories can provide a satisfactory interpretation of the 
observational evidence. The experiments discussed are mainly those of Klebanoff, 
Tidstrom & Sargent (1962) and of Kovasznay, Komoda & Vasudeva (1962). Various 
theoretical models will be referred to. 

It must first be emphasized that these admirable experiments do not map the only 
pathway from laminar to turbulent flow. In  ‘ real-life ’ flows, surface roughness, free- 
stream turbulence and several other factors may alter or bypass the Tollmien- 
Schlichting instability mechanism (see, for instance, Tani’s (1969), Reshotko’s (1976) 
and Morkovin’s ( 1978) reviews). Furthermore, in a controlled experimental situation, 
the process to transition will depend on the nature of the disturbances which are 
deliberately introduced into the flow. The vibrating ribbon of Klebanoff et al. (1962) 
imposed a particular class of disturbances, characterized by a single frequency and 
slight spanwise variations. The sequence of events may be significantly different for 
other types of disturbance; for instance those with two or more frequencies (Kachanov, 
Kozlov & Levchenko 1978) or substantial spanwise variations in boundary-layer 
thickness (Komoda 1967), or for a spatially localized ‘packet’ (Gaster & Grant 1975; 
Wygnaaski, Haritonidis & Kaplan 1979). 
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The linear stability of a single two-dimensional Tollmien-Schlichting wave in 
Blasius flow has been extensively studied. There is good agreement between theory 
and the classic experiments of Schubauer & Skramstad (1948) and also the more 
recent ones of Ross et al. (1970). In  addition, Gaster & Grant (1975) and Gaster (1975) 
find close agreement between linear theory and experiment for the initial development 
of tl localized disturbance. 

Mack (1977, 1978) has calculated the spatial linear amplification rate and associated 
coniplex group velocity of two-dimensional and oblique wave modes. The eigenvalue 
spectrum of the Orr-Sommerfeld equation with Blasius flow has been investigated by 
Jordinson (1971), Corner, Houston & Ross (1976) and Mack (1976); while systematic 
extension of linear theory to account for boundary-layer growth with downstream 
distance has been undertaken by Bouthier (1972, 1973), Gaster (1974) and Saric & 
Nayfeh (1975). Numerical solutions of the full Navier-Stokes equations for small- 
amplitude disturbances by Fasel(l976) show good agreement with the Orr-Sommer- 
feld results. Murdock’s (1977) computations show similar agreement a t  small ampli- 
tude, and deal also with larger two-dimensional disturbances for which the influence 
of nonlinearity is evident; while Orszag ( 1976) considers finite-amplitude three- 
dimensional disturbances. 

It is clear that, as computational techniques improve, ‘numerical experiments ’ 
based on the full Navier-Stokes equations will increasingly complement physical 
experiments and theoretical models based on linear and weakly nonlinear approxima- 
tions. Agreement of linear theory, experiment and small-amplitude computer solutions 
of the Navier-Stokes equations is gratifyingly good. In  contrast, existing comparisons 
of nonlinear theories and computations with experiments are sketchy, revealing 
qualitative rather than quantitative similarities. 

Notable among the weakly nonlinear theories stemming from the seminal paper of 
Landau (1944) is the work of Stuart (1960) and Watson (1960) and the well-known 
Benney-Lin theory (Benney & Lin 1960; Benney 1961, 1964; see also Antar & Collins 
1975; Nelson & Craik 1977). The former concerns two-dimensional waves only, and 
extensions of this work to the Blasius boundary layer have been attempted by Itoh 
(1974) and Herbert (1975). Other recent work by Itoh (1977) and, especially, Herbert 
(1977) give hope of further progress in this area. However, the present paper is primarily 
concerned with three-dimensional disturbances. 

The analyses of Benney and Lin yield a plausible explanation of the developing 
three-dimensional ‘ longitudinal-vortex ’ structure of the mean flow. In  addition, the 
mutual interaction of two- and three-dimensional wave modes has been examined by 
Stuart (1962), Craik (1971) and Usher & Craik (1975). These studies together reveal 
a wealth of theoretical possibilities, all of which seem to favour the growth of three- 
dimensionality in one way or another, but the details are quite different. The three- 
wave resonance envisaged by Craik (cf. the early work of Raetz 1959) involves second- 
order interactions among waves with two frequencies, one half of the other; Usher & 
Craik extended this work to include third-order terms and also considered non- 
resonant cases with the same wavenumber configuration; Stuart investigated third- 
order interactions among two- and three-dimensional waves with the same down- 
stream wavenumbers. Ifthese analysesare correct, then suitably controlledexperiments 
should display the features which they predict. As close a comparison as possible 
should therefore be made with the existing experimental data, both to help interpret 
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that data properly and to provide a check on the relevance of the theoretical models 
for these experiments. 

Here such a comparison is attempted with the observations of Klebanoff et al. and 
Kovasznay et al. In  many respects, the two sets of experiments are similar. Accord- 
ingly, comparisons are mainly made with the former, except where the latter reveal 
additional features. Some of the work described here is also reported briefly in Craik 
(1979). 

Other, visual studies of similar configurations, notably by Hama & Nutant (1963) 
and Wortmann (1977), are also of undoubted interest. But these are less amenable to 
direct comparison with existing theories and are therefore not discussed in such detail 
here. Likewise, the interesting work of Kachanov, Kozlov & Levchenko (1977, 1978) 
and that of Saric & Reynolds (1979), which emphasizes the spectral composition of the 
disturbances, is considered only briefly. 

2. Comparison with the linear eigensolutions 
The data of Klebanoff et al. on ‘controlled’ transition concern input disturbances 

of a single frequency, supplied by a vibrating ribbon. As these disturbances propagate 
downstream and amplify, marked spanwise variations in amplitude appear, with a 
spanwise wavelength of 1 inch equal to the spacing of 0.003 inch thick cellophane 
strips placed on the plate beneath the vibrating ribbon. (These strips were introduced 
to control the three-dimensionality after earlier attempts to eliminate it had proved 
unsuccessful). Second and third harmonics of this fundamental frequency are later 
detected, but these remain fairly small; the second harmonic only approaching 20 yo 
of the fundamental, and the third harmonic 8%, at a ‘peak’ station (i.e. at spanwise 
positions of maximum amplitude) as breakdown to turbulence is approached. Since 
no evidence of subharmonics is reported, it  would appear that the growth of three- 
dimensional disturbances cannot here be due to a resonant triad interaction between 
the fundamental two-dimensional wave and two oblique waves with half the frequency. 
However, it  should be noted that subharmonics were detected by Kachanov et al. (1977, 
1978)) though these were absent in the similar experiment of Saric & Reynolds (1979). 

While the Benney-Lin mechanism provides a model for the generation of a spanwise- 
periodic mean flow distortion similar to that observed experimentally, it does not 
describe how the initial almost two-dimensional waves develop a strong spanwise 
periodicity. The original Benney-Lin model may be thought of as comprising three 
plane waves of equal downstream wavenumber a, one of which is independent of 
spanwise distance z and the other two having equal and opposite spanwise wave- 
numbers -+p. Regarding the amplitudes of these waves as being O(E),  the quadratic 
interaction of the two-dimensional and spanwise-varying waves drives a system of 
O(@) longitudinal eddies with spanwise wavenumber ,8 and zero frequency provided - 
as they assumed - all three waves have the same frequency. Further, the quadratic 
interaction of the two spanwise-varying waves leads to an O(e2) longitudinal vortex 
structure with wavenumber 2p. There is some experimental evidence of such wave- 
number doubling (Klebanoff et al. 1962, figure 19). However, it was pointed out by 
Stuart (1962) that wavenumbers corresponding to the experimental configuration 
have linear frequencies which differ by about 15 %, contrary to the constant-frequency 
assumption of Benney & Lin. 
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Any synchronization of wave frequencies by nonlinear effects must take place, if 
a t  all, at  a higher order of the perturbation analysis than that developed by Benney 
& Lin: in this respect, their analysis is deficient. One possibility is to retain a frequency 
mismatch Aw in the second-order theory, as done by Antar & Collins (1975); in which 
case the mean flow distortion with wavenumber ,4 oscillates with frequency A u  but 
that with wavenumber 2,4 has zero frequency. A second alternative is to introduce a 
mismatch Act in the downstream wavenumber of such a magnitude as to ensure that 
the waves have identical frequencies a t  linear approximation. This causes the mean 
flow distortions to have x and z wavenumber components (ha,/?) and (0,2/?) res- 
pectively. Such a model was studied by Nelson & Craik (1977), with additional simpli- 
fying but restrictive assumptions which enabled analytic solutions to be obtained. 
A third possible theoretical development is to suppose that the waves are of equal or 
nearly equal frequency and downstream wavenumber and to carry the analysis to 
third order in wave amplitudes in order to derive the (truncated) nonlinear evolution 
equations for the wave amplitudes, which will determine a posteriori whether such 
nonlinear synchronization is feasible. 

Third-order synchronization seems a more attractive proposition than the second- 
order frequency- or wavenumber-mismahh models, since no such fluctuations of the 
longitudinal vortex structure, either in time or in space, are reported by Klebanoff 
et al. However, it  can be argued that their observations did not cover a sufficient 
region to detect a small downstream wavenumber Acc. That wavenumber is about 
15 % of the fundamental wavenumber a (corresponding to experimental downstream 
and spanwise wavelengths of 1.5 in and 1 in respectively) and so a downstream distance 
of several inches should have revealed its presence, if it existed. The published ex- 
perimental data cover a distance of under 4 inches between their stations B and D,  
but the measurements at  D are much distorted by the growing 2P-wavenumber 
component (see figure 18 of Klebanoff et al. 1962). The data is therefore inconclusive 
on this point. The two primary flows studied by Benney (1961, 1964) had piecewise- 
linear and tanh y velocity profiles, and so cannot be expected to yield secondary flows 
which agree closely with those for the experimental Blasius profile. But Antar & 
Collins ( 1975) investigated several Falkner-Skan profiles, including Blasius flow, 
retaining the frequency mismatch between waves, and their results seem to agree 
better with the experimental details. Of particular interest is the vertical (i.e. normal 
to plate) structure of the mean secondary flow. Benney’s (1961) work predicts an 
array of counter-rotating eddies, one set above and another below the critical layer; 
but no set of eddies was detected below the critical layer by Klebanoff et al., who 
speculate that it may be suppressed by the presence of the wall (cf. Benney 1964), 
and also point out that reliable measurements close to the wall are difficult to obtain. 
Antar & Collins obtain solutions both with and without the second set of ‘ wall eddies’, 
depending on their choice of parameters. 

It should be realized that the developing three-dimensional wave structure is also 
sensitive to pre-existing spanwise variations of the mean flow, whether inadvertent 
(Klebanoff & Tidstrom 1959) or deliberate (Komoda 1967). It is known that such 
mean-flow variations, once present, are remarkably persistent (see Crow 1966; Joseph 
& Hung 1971). The Benney-Lin theory considers that variations 0(e2 )  in mean flow 
occur in response to the nonlinear interaction of two O ( F )  wave modes; but an alterna- 
tive and complementary theoretical model can be constructed in which an O(E) 
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two-dimensional wave and an O(e)  spanwise-varying mean-flow modification may 
interact to generate oblique wave modes. A similar problem has recently been tackled 
by Nayfeh (1979). It is arguable that some of the experimental data may correspond 
more closely to the latter than to the former model. (I am grateful to Prof. M. Morkovin 
for emphasizing this point to me.) I n  such a model, the question of synchroniza- 
tion of frequencies of two- and three-dimensional modes must again necessarily 
arise. 

There is a further theoretical difficulty associated with the downstream growth of 
the boundary layer. As the waves progress downstream, their local wavenumber, 
growth rate and mode structure must alter in response to the varying boundary-layer 
profile. Such evolution, according to linear theory, has been convincingly studied 
(see above); but efforts to incorporate these effects into a consistent nonlinear theory 
have not proved entirely satisfactory (see Itoh 1974; Herbert 1975). 

Klebanoff et al. (1962) conjectured that the developing spanwise variations in wave 
amplitude were a direct consequence of the local spanwise variations in Reynolds 
number caused by the spacers placed below the vibrating ribbon. A small increase 
in Reynolds number would therefore cause increased amplification of a wave 
with frequency close to branch I and decreased amplification of a frequency close to 
branch I1 of the Tollmien-Schlichting linear stability diagram. Their figure 13 
certainly displays these features. 

However, this suggestion has an obviously rational theoretical justification only 
for a predominantly two-dimensional wave with amplitude modulation on a spanwise 
length scale which is long compared with the fundamental wavelength. The actual 
disturbances have a spanwise wavelength of 1 in., which is similar in magnitude to 
the downstream wavelength (1.5 in. for a 145 Hz wave and greater for a 65 Hz wave). 
Accordingly, the disturbances are inherently three-dimensional and the proposed 
explanation of Klebanoff et al., based on two-dimensional arguments, is an over- 
simplification. Further theoretical work on the stability of spanwise-varying flows 
is necessary in order to model this situation: at present, a full theoretical explanation 
of Klebanoff et al.’s (1962) figure 13 is lacking. 

The vibrating ribbon produces disturbances of a single frequency o which are 
predominantly two-dimensional. But the initially small three-dimensional ingredients 
must consist largely of waves with spanwise wavelength equal to 1 in. Such waves, 
with x, y, t periodicities of the form B* exp i(a,x _+ ,8y - wt) and spatially varying 
amplitudes B+ should - according to linear theory - have downstream wavenumber 
al roughly 15% less than the wavenumber a of the two-dimensional wave of form 
A exp i(ax - wt). To be more precise, if 2 ~ / a  corresponds to a downstream wavelength 
of 1.5 in. as for Klebanoff et al.’s 145 Hz wave a t  U,/v = 3.1 x lo5 ft-l, and if the three- 
dimensional waves have a spanwise wavelength of 1 in., then Pla = $ and examination 
of curves of constant frequency in the two-dimensional a, ,8 wavenumber space (as 
shown for instance in figure 2 of Craik (197 1) shows that .,/a 0.85. This implies that 
the wavenumbers (al, 5 P )  correspond to plane waves B* propagating at  equal and 
opposite angles of nearly 60’ to the flow direction. 

Of course, 1B+I = IB-1 for symmetry, ensuring that the wave pattern has a standing 
rather than propagating spanwise variation. At propagation angles of B O O ,  the effective 
Reynolds number is reduced by half, in accordance with Squire’s transformation, and 
such waves may be damped, rather than amplified, according to linear theory. But 
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the damping will be sufficiently small for fairly weak nonlinear terms to cause these 
waves to grow, rather than decay, with distance downstream. 

Klebanoff et al. supply details of the r.m.s. intensity u’ of the downstream velocity 
fluctuation at various downstream and spanwise locations (see their figure 6). Also, 
the relative amplitudes of the two- and three-dimensional waves may be inferred 
from their figures 2 and 3. According to  their figure 2, with a 145 Hz wave measured 
at 0.042 in from the plate and 3 inches downstream of the ribbon, u’/Ul is approxi- 
mately 0.008 and 0.012 at ‘valley’ and ‘peak’ spanwise positions respectively; a t  
6 inches downstream the corresponding values are about 0.006 and 0.030; and at  
7-5 inches about 0-017 and 0.068 respectively. These readings imply u‘/Ul amplitudes 
of IA I = 0.010,0.018 and 0.042 for a two-dimensional wave a t  the three downstream 
positions, and corresponding oblique wave amplitudes of IB*I = 0.001, 0.006 and 
0.013. (Note that the difference of the ‘peak’ and ‘valley’ values of u‘/tJl must equal 
4lB*l.) The values are inconsistent with exponential growth of the waves, suggesting 
that the linear growth or decay rates are substantially modified by nonlinear effects. 
(However, downstream growth of the boundary layer must also produce departures 
from exponential amplification.) 

Despite the undoubted presence of nonlinear effects, it does not follow that the 
local structure of the waves must depart substantially from that predicted by linear 
theory: indeed the central assumption of weakly nonlinear theory is that the wave 
eigenfunctions given by linear theory continue to yield good approximations to the 
structure of the wave motion, across the boundary layer. In  particular, the structural 
changes with increasing wave amplitude (such as shown in Klebanoff et al.’s figure 5) 
are not necessarily evidence of ‘strong’ nonlinearity, as is often assumed. In  fact, it  
is here shown that the experimental records agree quite well with the appropriate 
linear eigenfunctions, even up to station D, which is close to ‘breakdown’. 

It is. important to recognize that the velocity perturbations associated with the 
oblique waves have three velocity components. The components normal to the plate 
and normal to the crests of a plane oblique wave are determined by the reduced 
two-dimensional problem, in accordance with Squire’s theorem; the third component, 
that parallel to the wave crests, results from distortion by the vertical motion of the 
component of the mean flow directed along the wave crests. The total measured u’ 
velocity in the x direction will comprise (i) the downstream component associated with 
the two-dimensional wave A ,  (ii) the downstream component of the velocities normal 
to the crests of the oblique waves B* and (iii) the downstream component of the 
velocities parallel to the crests of the oblique waves B*. 

A significant feature of ingredients (i) and (ii) is that the phase of these fluctuations 
remains almost constant with depth (except within a narrow layer across which it 
changes rapidly by almost n radians); this is readily confirmed from figure l ( b ) ,  
which shows that the imaginary part of this velocity component greatly exceeds its 
real part throughout the boundary layer. In  contrast, the phase of the velocity com- 
ponent (iii) shows marked variations with depth because its real and imaginary parts 
are functions of depth which are comparable in magnitude (see figure la). This 
component, denoted by a* for the respective oblique waves, obeys a linearized equation 
of the form (cf. Craik 1971, $3) 



Breakdown in unstable boundary layers 263 

-8 -41 VReui 
Y 0 

7 
-8 V 

FIGURE 1. (a) Velocity component $+ parallel to  oblique wevecrests. ( b )  Velocity component t i f  
normal to oblique wave crests. ( c )  Composite downstream velocity component 

(d )  Imaginary part of composite spanwise component w = y-l(/?Zi++a$+). Rew is virtually 
(u/y) Re ($+). Results due to Hendriks (see appendix to Usher & Craik 1975) for case R = 882, 
a = 0.25, p = 0.1991, y = 0.3145 with propagation angle of 37.4'. 

where U(y) is the primary flow, c = c,.+ic, is the complex phase velocity in the x 
direction, y2 = ( a 2 + j 3 2 )  and q5* is the appropriate eigenfunction of the reduced 
Orr-Xommerfeld problem. The appropriate boundary conditions are S * ( O )  = 0 and 
S* 3 0 as y + 00. The solution of this equation for the Blasius flow profile is given by 
F. Hendriks, in the appendix to the paper by Usher & Craik (1975), for a = 0.25, 
p = 0.1 91 1 and a Reynolds number based on displacement thickness of R = 882. (Note 
that in that paper +a corresponds to the present a for oblique waves. Also, the solu- 
tion for negative j3 is just minus that for positive p.) This wave propagates at  37-4" 
to the x direction, which is considerably less than the 60" angle inferred from Klebanoff 
et al.'s data; but the structure of S* is certain to be similar in the two cases. Hendrik's 
solution is reproduced here in figure l(a). The y co-ordinate is defined so that the 
displacement thickness of the boundary layer is unity. There do not seem to be any 
other published solutions for this velocity component. Though Antar & Collins (1975) 
certainly also computed it, they do not describe their results. 

{ia(y - c) - R-ld2/dy2} S* = constant, 

u = y-'(uzi+- PA v+ 1. 

Hendriks' result may be compared with the solution of the equation 
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which may be renormalized as 
(d2/dY2-iY)Of = 1 

with Y EZ (aR)* (y - c) representing distance from the critical layer. The solution of 
the latter equation, with the boundary conditions O* -+ i/ Y as Y +- f co, was first 
found by Holstein (1950) in connexion with the asymptotic viscous solutions of the 
Orr-Sommerfeld equation; and some properties of this function, now known as a 
Lommel function, are outlined by Benney (1961, 1964) and Craik (1971). Despite the 
closeness of the critical layer to the wall in Hendriks’ case, the real and imaginary 
parts of his Ok display the same broadly symmetric and antisymmetric structure about 
the critical layer as the Lommel function. 

Figure 1 (b)  shows the eigenfunction for the velocity component zi+ normal to the 
wave crests and figure 1 (c) shows the composite downstream velocity perturbation 
of the oblique wave, defined as u = ~-~(azif-/3O+), for Hendriks’ case R = 882, 
a = 0-25, /3 = 0.1911, y = 0.3147. Figures l ( b ) ,  (c) clearly show that the phase of Zi 
remains fairly constant across the boundary layer, apart from a sudden change of n 
a t  y = 1-85 where Re zi changes sign; but that the phase of the overall downstream 
velocity perturbation u changes continuously, owing to the O+ contribution. (Note 
that y = 1.85 is not near the critical layer, which is a t  y = 0.67.) 

When a two-dimensional wave and a pair of oblique waves are present, as in the 
experiments considered, the phase variation of the total downstream velocity per- 
turbation will resemble that of zi when the two-dimensional wave is of much greater 
amplitude than the others; but, as the three-dimensional waves attain larger ampli- 
tudes, the phase will vary continuously, in a manner determined by the relative 
intensities and phases of the two- and three-dimensional components. This is in 
accord with figure 8 of Klebanoff et al. 

The variations in root-mean-square intensity of the downstream velocity fluctua- 
tion shown in figure 5 of Klebanoff et a1. may also be understood as the contributions 
from the three waves, essentially as given by linear theory. Such variations are here 
modelled in figure 2 (a ,  b ) .  To avoid further computations, it was supposed that the 
velocity associated with a two-dimensional wave is just 22(y) as shown in figure 1 (b) ,  
and that the downstream velocity associated with the pair of oblique waves is 

eiou(y) cos/3z, 

where 0 is a constant phase lag. This corresponds to  oblique waves with amplitudes 4 
that of the two-dimensional wave. The 1.111.5. fluctuations across the boundary layer 
are shown for cos /3z = 1, 0 and - 1 ,  the curves in figure 2 ( a )  being for &J = 0 and those 
in figure 2 ( b )  for 0 = 4n. It is clear that, for varying wave-amplitudes and phase lags, 
the distribution of intensity assumes differing shapes. The greatest intensity is 
recorded a t  y = 0.8 for 0 = 0 and cos/3z = 1,  while the maximum intensity for the 
two-dimensional wave alone is at y = 0.5. This displacement of the peak of intensity 
away from the wall, and other general characteristics of the waves shown, are consis- 
tent with the experimental data of Klebanoff et al. It is possible that the presence of 
curves with double maxima at the experimental station B and the absence of such 
curves a t  station C indicate a change in phase 0 of the three-dimensional wave pattern 
relative to the two-dimensional wave over this distance of just under 2in. This 
provides some slight support for the view that the downstream wavenumbers of 
two- and three-dimensional waves must differ. 
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FIGURE 2. R.m.s. downstream velocity fluctuations across boundary layer for combination of 
two- and three-dimensional waves, a t  spanwise stations cos ,8z = 1, 0 and - 1. (a )  Results for 
phase lag 0 = 0. ( b )  Results for phase lag 0 = +n. 

The instantaneous u-velocity fluctuation across the boundary layer, given by 
Re{u eiwt}, also varies substantially both with time and with spanwise location. Figure 
17 of Klebanoff et al. is certainly consistent with the present results, bearing a par- 
ticular resemblance to - Im{u> of figure i ( c ) .  The spanwise velocity fluctuations 
w exhibit similar behaviour, but Klebanoff et al. plot the total spanwise velocities in 
their figures 15 and i6,  which includes the substantial mean flow resulting from the 
(Benney-Lin) longitudinal eddies. It is a remarkable, and unexplained, fact that their 
mean and fluctuating spanwise components almost cancel, once every cycle. The 
imaginary part of the spanwise fluctuation w for Hendriks’ wave is shown in figure 
1 (d);  the real part of w is virtually equal to ( a / y )  Re O+. In order to model the total 
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FIQURE 3. Instantaneous spanwise velocity profiles, 
W + R e  {we'd), 4 = 0', go", 180' and 270'. 

spanwise Aow, we somewhat arbitrarily set the spanwise mean flow W equal to 8 Im (w). 
This choice was made after noting the similar form of Im (w) and Klebanoff et al.'s 
measured W .  With a pair of oblique waves, and larger two-dimensional wave, the 
fluctuations and mean flow both vary roughly as cospz in the spanwise direction (i.e. 
neglecting the 2p longitudinal eddy; cf. Klebanoff et al., figure 18). Instantaneous 
profiles of W +  Re{wei$} (9 = alz - wt + const.) at  a fixed spanwise location are 
shown in figure 3 for 4 = 0", go", 180" and 270". These are in reasonable agree- 
ment with Klebanoff et al.'s figures 15 and 16 (cf. also Wortmann's 1977 figures 7 
and 8). 

An interesting obserired feature is the apparently sudden change in the rate of 
phase increase with downstream distance, shown in figure 7 of Klebanoff et al. The 
gradient is constant up to about 5 in. downstream of the ribbon, indicating a fixed 
wavelength of 1-5 in. Thereafter, the gradient is again nearly constant for at  least the 
next 4 in. (which extends beyond the appearance of the 'spike'), giving an increased 
wavelength of nearly 2 in. It may be argued that, up to 5 in., the two-dimensional wave 
is largest and beyond this point the three-dimensional waves are dominant. There- 
fore, since the three-dimensional waves have greater downstream wavelength, the 
observed wavelength is seen to increase. But such an explanation cannot account 
for the rather sudden change. Rather, some degree of 'spatial synchronization ' 
by a nonlinear mechanism seems likely. However, the growth in boundary-layer 
thickness with downstream distance must also contribute to the observed change in 
wavelength. 

Some remarks about the streamlines associated with three-dimensional waves are 
appropriate here. Firstly, it does not follow, as is often supposed, that the position 
of maximum downstream velocity u coincides with the ' crest of the wave ' as indicated 
by the maximum streamline displacement. This is only true for two-dimensional 
waves. Secondly, the streamlines in the XI-y plane (5' = z-c,t) at a peak station 
z = 0 will have a structure different from that for a plane two-dimensional wave, even 
though w = 0 there. This is because aw/& is non-zero and the two-dimensional con- 
tinuity equation is not satisfied. This has important repercussions for the shape of the 
streamlines near the critical layer. In  general, they will not be the familiar 'Kelvin 
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cats’-eyes’, even according to  linear theory. The shape of the closed streamlines and 
the structure near the critical layer is strongly influenced by the relative phase of the 
X I -  and y-velocity components (which is always 90” for two-dimensional waves). 
However, since such details are not as yet revealed by experiments, the matter is 
not pursued here. 

3. ‘Preferred’ spanwise wavenumber 
Klebanoff et al.’s experiments on natural transition, without any artificially intro- 

duced disturbance, reveal considerable similarities with those using the vibrating 
ribbon. The spanwise variation of a spontaneously growing disturbance is of course 
less regular than in the controlled experiments; but there again appears to be a 
preferred, or dominant, spanwise spacing of ‘peaks’ of around 1 in. (see their figure 33). 
It is unclear whether this ‘preferred spacing’ is evidence of a universal hydrodynamic 
phenomenon, or a feature of the particular experiment; but the former would not be 
too surprising. 

The possibility of preferred spanwise wavenumbers was explored by Craik ( 197 1 )  
in his theory of resonant wave triads. As mentioned in Q 2, the controlled experiments 
of Klebanoff et al. show no evidence of subharmonic frequencies; consequently, there 
appears to  be no significant resonant interaction involving the fundamental two- 
dimensional wave and an oblique wave pair. But Craik also pointed out the existence of 
a triad for which the two-dimensional wave has twice the frequency of the fundamental 
(see Craik 1971, p. 398 and figure 2): in which case the two oblique waves have the 
same frequency as the fundamental, as in the experiments. 

A ‘free’ linear mode with twice the fundamental frequency does not have a wave- 
length twice that of the fundamental; it  is about 10% less than this for a = 0-25 a t  
R = 882, for instance. A slightly nonlinear two-dimensional wave with (real) wave- 
number and frequency (a,  w )  will normally drive a second harmonic (2a, 2w)  which 
is not a free linear mode. But when the ‘driving terms’ have the same frequency as, 
and a rather similar wavenumber to, that of a free mode, then that mode - though 
‘off resonance’ - may develop a significant amplitude. If this is so in the experiments 
of Klebanoff et al., where a second harmonic of up to 20% of the fundamental is 
reported, then a resonance mechanism similar to that of Craik (197 1 )  could account 
for the spontaneous growth of a particular oblique wave pair. Extension of the reso- 
nance theory to this case, incorporating four waves which interact quadratically, has 
receiitly been carried out by Nayfeh & Bozatli (1979). Using the method of multiple 
scales, they include imperfect resonance through wavenumber mismatch and also the 
influence of boundary-layer growth. However, resonance models of this kind are 
applicable only if the ‘ second harmonic ’ is close to  a free linear mode. 

Craik (1971, p. 411) pointed out that the imposed spanwise spacing of 1.0inch in 
the experiments of Klebanoff et al. is close to that required for resonance at  one of the 
two frequencies studied. It would be interesting to know whether similar experiments 
with diflerently spaced spanwise irregularities would yield similar results. This would 
cast more light on the relevance of the resonance theory and help determine whether, 
in fact, there is a genuine preferred spanwise wavenumber. It should be noted, too, 
that  the linearly most unstable disturbance with fixed frequency is not necessarily two 
dimensional : thus, for certain frequencies, even linear theory may provide a mechanism 
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FIGURE 4. (a )  Instantaneous u-velocity profiles for an oblique wave and uniform shear flow: 
30y+Re{ueaa"'), 0 < y < 1.6, at ad = --R, 4, 0, +R, T I .  ( b )  Contours of constant shear denoting 
regions of enhanced shear with 0 < 40" and negative shear 0 > 90" for profiles shown in (a).  
The wavy dotted line shows an approximate streamline in the 2'-y plane for a wave amplitude 
half that  shown in (a). 

for selecting a preferred spanwise wavenumber (I am grateful to Professor J. T. 
Stuart for emphasizing this point). 

4. The high-shear layer 
The appearance of the first high-frequency 'spike' is preceded by the development 

of a region of relatively high shear a t  some distance from the wall (see Tani 1969, 
p. 176). It is here shown that the vorticity perturbation associated with a linear two- 
dimensional wave does not display such a feature, but that for a pair of oblique waves 
yields instantaneous mean-flow profiles in broad agreement with those observed. 

Figure 4 (a )  shows instantaneous profiles comprising oblique-wave fluctuation 
Re(ueiaz') (as shown in figure Ic )  and a uniform mean flow ?i = 30y. Of course, this 
is an oversimplification of the true situation, the actual mean flow being Blasius flow 
distorted by a secondary spanwise-varying component associated with the steady 
longitudinal-vortex structure. The intensity of this secondary steady flow is rather 
comparable to that of the fluctuations. The present profiles therefore model Blasius 
flow (which is approximately linear up to  y 2: 1.5) and fluctuation but neglect the 
steady mean flow distortion. 

It is seen that, in a reference frame travelling with the wave speed, regions of 
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0.875 

FIGURE 5. Contours of constant enhanced shear, 0 = 40°, in 2’-z plane for 
four fixed values of y (0.75, 0.875, 1.0 and 1.25). 

enhanced shear propagate downstream and away from the wall and gradually decay 
its y increases beyond about 1.25. The velocity scale shown is arbitrary; but, to model 
Blasius flow with displacement thickness of unity, the constant free-stream velocity 
should be chosen equal to 53 units. The critica.1 layer is then situated a t  y = 0-67. 
Approximate contours of constant shear may be determined from the instantaneous 
profiles by considering the angle 0, a t  various values of y, which the tangent to the 
profile makes with the u-axis. For each profile, values of y may be found at which the 
angle 0 takes a prescribed value. From these, contours such as those of figure 4(b)  
may be determined; those shown being for 0 = 40” (enhanced shear) and 0 = 90” 
(shear reduced to zero). To the order of approximation considered, the location of the 
enhanced shear region does not depend on wave amplitude, although the strength of 
the shear does, Accordingly, the contours of figure 4 ( b )  also denote lines of constant 
shear for other wave amplitudes, a fact which is used later. 

These results show a similarity with Kovasznay et al.’s figures 9 and 10. A similar 
propagation of the high-shear regions of spanwise velocity component is very evident 
in Wortmann’s (1977) figures 7 and 8 and may also be deduced from Klebanoff et al.’s 
(1962) figure 16. This is entirely consistent with the present explanation that this 
feature is mainly due to the contribution from the 6+ velocity components of the 
oblique waves. On the other hand, Wortmann’s figure 6, showing ‘Lissajous’ figures’ 
of the composite downstream and spanwise velocity vector over one wave period, is 
not in such clear agreement with linear theory. The latter predicts figures of elliptical 
or straight line shape, the axial directions of which are broadly in accord with Wort- 
mann’s data. The more complex shapes found by Wortmann may be due partly to 
the presence of higher harmonics owing to nonlinearity, but also to experimental 
scatter resulting from the indirect method of deducing velocities from bubble photo- 
graphs and tc  an unexplained lack of symmetry in the data. 

If the profiles shown in figure 4 (a )  are taken to correspond to  a peak station z = 0,  
where two oblique waves reinforce each other (with the two-dimensional wave neg- 
lected) the intensity of u fluctuations varies as cospz. The maximum shearing rate is 
thereby reduced a t  ‘ off-peak ’ locations. Such XI-z dependence, a t  various fixed 
heights y ,  is shown in figure 5 as contours of constant enhanced shear, 0 = 40” for 
y = 0.75, 0.875 and 1.0. 

9-2 
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The instantaneous u profiles and regions of enhanced shear are very different for a 
two-dimensional wave. For u = 30y+Re{22ieia5’} and O(y) as given in figure 1 ( a )  
(i.e. for a wave amplitude twice that of the oblique wave just discussed) regions of 
enhanced shear with 0 < 40” do not penetrate beyond y = 0.3. There is some shear 
enhancement above the critical layer, each half-cycle, but much less than for an 
oblique wave of comparable amplitude. Also, this enhanced-shear region does not 
‘propagate’ like that for an oblique wave. 

The distorted mean flow a t  a ‘peak’ station has enhanced shear approximately in 
the region 0.85 < y < 1.2 (cf. Klebanoff et al., figure 23) but this increase decays to 
zero at side stations and becomes a shear defect at  ‘valleys). The magnitude of this 
effect appears to be comparable to that discussed above and so cannot be omitted 
from a realistic model of the instantaneous velocity profiles. The shapes of constant- 
shear surfaces in x‘-y-z space (in a reference frame moving with the wave) become 
complicated when two- and three-dimensional waves and the mean-flow distortion 
are all included. The relative amplitudes and phases of the waves cause the shapes to 
change, and a detailed study is best delayed until precise numerical solutions are 
available corresponding to actual experimental waves and mean flow distortion. But, 
even at this stage, the qualitative picture seems clear. 

The shear enhancement at peak stations is particularly large in the region near the 
edge of the boundary layer where the mean flow distortion and the three-dimensional 
wave fluctuation reinforce each other. The direct contribution of the two-dimensional 
wave in this region may be quite small; but it still plays an important, though in- 
direct, role since the mean-flow distortion derives from the interaction of the two- 
and three-dimensional waves. The enhanced shear region is concentrated near peak 
stations, since both the mean flow distortion and three-dimensional wave contribution 
decay approximately to zero at  ‘side’ stations. Figure 4 ( b )  indicates that the region 
is inclined to the wall roughly a t  the angle tan-l (& /A) ,  where S is the displacement 
thickness and h the wavelength; but it will eventually decrease in strength as the 
edge of the boundary layer is reached. Preliminary calculations using Hendriks’ data 
give hope that the ‘swept-back delta-wing’ contours of greatest shear found by 
Kovasznay et al. (figure 11)  may be modelled, to reasonable accuracy, by linear waves 
superimposed on the distorted mean flow. Since the mean flow distortion may itself be 
calculated by weakly nonlinear theory, it seems that weakly nonlinear theory may 
provide a satisfactory local description of the flow virtually up to breakdown. Con- 
firmation by detailed computations is a desirable next step. 

The proposal that weakly nonlinear theory can describe conditions virtually up to 
breakdown deserves careful examination. It is probable that disturbances a t  any given 
location can be so represented by suitable choice of the various amplitudes of waves 
and mean flow modification, as was done above. But it is not yet clear whether a weakly 
nonlinear theory can adequately describe the variations in wave amplitudes with down- 
stream distance. Weakly nonlinear models certainly reproduce various qualitative 
features of the observed flows; but formal mathematical justification for such models 
is usually lacking. Higher-order terms are definitely negligible compared with those 
retained only for marginally unstable waves of very small amplitude (see Stewartson & 
Stuart, 1971). A t  Reynolds numbers removed from that for linear neutral stability 
and for larger wave amplitudes, the range of approximate validity of any weakly non- 
linear model is difficult to establish (see the remarks of Usher & Craik 1975, pp. 457-8). 
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5. The secondary instability 
The ‘warping’ or ‘wrinkling’ of the high shear layer (see Kovasznay et al., figure 10) 

has been attributed to a secondary instability with a characteristic downstream 
wavelength much smaller than that of the fundamental waves. The associated records 
of u fluctuations display one or more ‘spikes’ (Klebanoff et al., figure 21). The wave- 
length of such spikes is typically of order one tenth that of the fundamental wave. 
Klebanoff et al. conjectured that the secondary instability is akin to other observed 
inflexional instabilities of shear layers. The local flow near the high-shear layer is 
three-dimensional, with substantial spanwise variations in shear and also changes in 
spanwise velocity which are responsible for vortex stretching. The resulting secondary 
instability is therefore also strongly three-dimensional, the ‘wrinkle ’ of the high-shear 
layer being rapidly ‘swept back’ on either side of the peak location. Klebanoff et al. 
show some evidence that the first ‘ spike ’ is, even at  this early stage, a manifestation of a 
discrete ‘hairpin eddy’: but see Hama & Nutant (1963) for an alternative description. 

A similar secondary instability, occurring within a localized wave packet, is des- 
cribed by Gaster (1978). This appears as a smaller-scale packet which later exhibits a 
tertiary instability. The flow visualization experiments of Wortmann (1977) give yet 
another view of the complex events taking place. It may be surmised from these 
various studies that the secondary instability at  first comprises a small number of 
wavelike disturbances, but that these waves quickly roll up, somewhat like Kelvin- 
Helmholtz billows, into discrete vortices with a strong three-dimensional structure. 

An even remotely adequate theoretical description of this process is lacking, but 
some limited progress has been made in constructing theoretical models for the initial 
growth of secondary disturbances in the high shear layer. The following comments are 
inevitably more speculative than those expressed above. 

Presuming, like Klebanoff et al., that the secondary instability is associated with an 
inflexion point of the shear-layer profile, the propagation speed of the small-scale 
disturbance should be close to that of the fluid of the high-shear layer. This varies 
somewhat with downstream position, because the location of the high-shear layer 
varies within the boundary layer; but it certainly exceeds that of the fundamental 
wave whenever the high-shear layer lies above the critical layer - as it does when the 
‘ spike ’ is observed. 

In  their model of secondary instability, Greenspan & Benney (1963) consider the 
stability of various two-dimensional, inviscid, periodically varying (quasi-) parallel 
flows. For a model chosen to represent the velocity profile just prior to breakdown, 
they obtain the encouraging result that there is indeed a rapid instability with pre- 
ferred wavenumber of about five times that of a primary two-dimensional wave. How- 
ever, they rightly emphasize the crudity of their representation of the actual strongly 
three-dimensional shear layer. 

As well as omitting spanwise variations, they also neglect the streamwise variations 
of the velocity profile. But, for constant amplitude three-dimensional waves, the 
enhanced shear layer moves away from the wall as it travels downstream, as described 
above, and there is no reference frame in which the velocity distribution is a function 
of time alone. In the experiments, the primary wave amplitudes also grow rather 
rapidly with downstream distance. 

With an enhanced shear layer inclined like t h a t  indicated in figure 4 (b),  individual 
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fluid particles may spend a relatively short time in passing through the high-shear 
region. This is certainly so for small-amplitude waves; and strong secondary in- 
flexional instability of the high-shear layer then seems unlikely. (Particles travelling 
at near the fundamental wave speed are located near the critical layer, which is not 
within the enhanced-shear region.) However, for larger waves, the streamlines may be 
displaced sufficiently to  ensure that fluid particles spend longer in the high-shear region. 

To demonstrate this, an approximate streamline is shown in figure 4 ( b )  for a 
wave amplitude just half that  which gives rise to  the profiles of figure 4(a). (Recall 
that, although the strength of the enhanced shear region varies with wave amplitude, 
its location does not, t o  linear approximation.) The streamline displacement 9 from 
the mean level y = 1.0 was calculated from the formula 

dy/dx’ = qRe{weiax’}/(30y- 20) 

with zc(y) as given by Hendriks’ figure 2(a)  (see appendix to Usher & Craik 1975). 
Though inaccurate near the critical layer, this formula is good enough for present 
purposes. It is seen that the streamline and the high-shear region are ‘matched’ 
for about $ of the fundamental wavelength. Tn contrast, the greater wave amplitude 
corresponding to  the profiles of figure 4 ( a )  is too large for such matching. Also, for 
smaller amplitudes, matching does not occur and, in addition, the maximum shear 
rate is reduced. It may be conjectured that, as the wave amplitude increases to  that 
typical of the development of the ‘spike’, the combined effects of increased shear 
and the matching of shear layer and streamlines will favour the growth of secondary 
instability. I n  this case, the enhanced shear layer, observed relative to streamline co- 
ordinates, extends over a distance of 3 of a fundamental wavelength and inflexional 
instability of this layer is very plausible. Small-scale disturbances should then attain 
maximum amplitude a t  about the point where the fundamental streamlines leave the 
high-shear layer. When both two- and three-dimensional waves are present, it is the 
streamline of the composite disturbance which must be matched to  the high shear 
region: the particular example treated above should be regarded as an instructive 
oversimplification. Of course, the idea that the ‘spike ’ results from warping of the 
high-shear layer is not new. But the likely importance of ‘matching ’ of shear layer and 
streamlines has not previously been noted. Indeed, the familiar diagram of constant 
velocity contours and high-shear layer (see Tani 1969, figure 6) is easily misinterpreted 
as showing streamlines, which it does not. 

Finally, i t  is appropriate to  consider the theoretical model of breakdown proposed 
by Landahl(l972). A small-scale secondary wave riding on a large-scale primary wave 
pattern is assumed to evolve according to kinematic wave theory. It is claimed that a 
self-excited secondary wave attains large amplitude on the primary wave crest, because 
of space-time focusing, when its local group velocity is close to the phase velocity of 
the primary wave. This seems an attractive model, especially as the secondary waves 
can evolve in a truly nonlinear fashion. However, the applicability of conservative, or 
nearly conservative (see Jimenez & Whitham 1976), kinematic-wave theory to  this 
problem has not been firmly established: for some objections, see Stewartson (1974). 
For other reasons, too, i t  is hard to accept Landahl’s claims that his theory yields 
‘good quantitative agreement with the experiments. . .for the critical condition 
leading to breakdown’ and that it can ‘explain all the main qualitative breakdown 
features observed by Klebanoff et al. and others’. 
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Landahl calculated the complex phase velocity, say c(a l ) ,  of secondary two- 
dimensional waves of local wavenumber a1 on quasi-steady flows chosen to fit the 
instantaneous velocity profiles a t  ‘wave crests ’ for Klebanoff et al.’s stations C and D. 
His results for station D, which is near to breakdown, show that the group velocity 
i3(alc)/i3al, and also c itself, at the largest locally unstable wavenumbers a1 are close 
to the phase velocity of the primary wave. No such agreement occurs a t  station C, 
where the group velocity associated with the ‘ wave-crest ’ profile is greater than the 
primary phase velocity. It is tempting to interpret this as support for the kinematic- 
wave model of breakdown. But such hopes are misplaced. 

To quite good approximation, the phase and group velocities of the shorter unstable 
waves a t  stations C and D must agree with the flow velocities a t  the outer inflexion 
point of the respective instantaneous profiles. This is what one would expect from 
inviscid theory for an unstable shear layer. But the instantaneous profiles vary 
greatly over a single wave period in the manner described above. At fixed locations, 
the inflexion point moves towards the wall as the wave goes past (cf. figure 4 and Kovasz- 
nay et al.’s figure 9) with the instantaneous ‘wave-crest’ profiles examined by 
Landahl having inflexion points a t  (nearly) the largest values of y .  (But see the remark 
a t  the end of 3 2 regarding the dangers of equating maximum and minimum horizontal 
velocity fluctuations with crests and troughs of streamlines.) As the inflexion point 
moves towards the wall, the local phase and group velocities of short inflexionally 
unstable waves will decrease roughly according to quasi-steady theory. In particular, 
they will become less than Landahl’s ‘wave-crest’ values; and it seems certain that 
there will be some moment during the wave cycle a t  which the group velocity of the 
short waves will equal the primary phase velocity for each point between C and D; 
and, indeed, for points upstream of C and downstream of D as well. Accordingly, no 
particular significance should be attached to the agreement of group velocity and 
primary phase velocity found by Landahl a t  station D. 

In  short, Landahl is wrong in assuming that the lowest group velocity occurs at  the 
wave ‘ crest ’ : instead, it is likely to be nearly the highest ! In  fairness, though, it should 
be said that his assumption may be roughly true for two-dimensional waves, since for 
these the inflexion point does not migrate through the boundary layer. But in the 
experiments of Klebanoff et al. and Kovasznay et al. the waves are strongly three 
dimensional. 

Despite these criticisms, a kinematic-wave approach to the secondary instability 
may yet prove fruitful. But such a theory should be based on streamline co-ordinates 
for the primary flow, viewed in the reference fra.me of the primary wave pattern, and 
must accurately incorporate the structure of the evolving velocity profile. For short 
waves, presumably centred more or less on the path traced out by the inflexion point 
of the velocity profiles, the primary flow may indeed appear to be ‘slowly-varying ’ in 
those regions where the streamlines and high-shear layer are roughly coincident, as 
discussed above. In  this case, a kinematic-wave theory might be appropriate. 

6. Conclusions 
Many observed features of the nonlinear instability of the Blasius boundary layer 

are shown to be consistent with three-dimensional linear or weakly nonlinear theories, 
even as breakdown is approached. Particular attention is drawn to the ‘propagating’ 
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nature of the high-shear layer associated with three-dimensional waves. The results 
underline the need to guard against ‘ two-dimensional thinking ’, since the observed 
features cannot be explained in terms of ‘locally two-dimensional’ waves. It is 
suggested that the development of secondary instability is encouraged when the 
primary streamlines are sufficiently distorted to  lie within the high-shear layer for 
most of a fundamental wavelength. Detailed computations based on existing theories. 
and an improved theory for the secondary instability, are still required to model the 
transition process to greater accuracy. 

I am grateful to  Professor Mark Morkovin both for letting me see his recent review 
article, prior to  publication, and for detailed and instructive criticism of the first 
draft of this work; also to  Dr Philip Morris for news of the work of Kachanov et al., 
and to Professor J. T. Stuart for some comments. 
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